- счётное подмножество
- Mathematics: countable subset
Универсальный русско-английский словарь. Академик.ру. 2011.
Универсальный русско-английский словарь. Академик.ру. 2011.
Счётное множество — Не следует путать с перечислимым множеством. В теории множеств, счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество является счётным, если существует биекция ,… … Википедия
Несчётное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… … Википедия
Счётное множество — бесконечное множество, элементы которого можно занумеровать натуральными числами, то есть установить Взаимно однозначное соответствие между этим множеством и множеством всех натуральных чисел. Как доказал Г. Кантор, множество всех… … Большая советская энциклопедия
Замкнутое подмножество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш … Википедия
Несчетное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… … Википедия
Континуум (теория множеств) — У этого термина существуют и другие значения, см. Континуум. В теории множеств, континуум (от лат. continuum непрерывное) мощность (или кардинальное число) множества всех вещественных чисел. Обозначается строчной латинской буквой c во … Википедия
Бесконечное множество — множество, не являющееся конечным. Можно дать ещё несколько эквивалентных определений бесконечного множества: Множество, в котором для любого натурального числа найдётся конечное подмножество из элементов. Множество, в котором найдётся счётное… … Википедия
Условное распределение — в теории вероятностей это распределение случайной величины при условии, что другая случайная величина принимает определённое значение. Содержание 1 Определения 1.1 Дискретные случайные величины … Википедия
Условная плотность — Условное распределение в теории вероятностей это распределение случайной величины при условии, что другая случайная величина принимает определённое значение. Содержание 1 Определения 1.1 Дискретные случайные величины … Википедия
Условная функция вероятности — Условное распределение в теории вероятностей это распределение случайной величины при условии, что другая случайная величина принимает определённое значение. Содержание 1 Определения 1.1 Дискретные случайные величины … Википедия
Условная плотность вероятности — Условное распределение в теории вероятностей это распределение случайной величины при условии, что другая случайная величина принимает определённое значение. Содержание 1 Определения 1.1 Дискретные случайные величины … Википедия